北京AI工程师
请询价
- 介绍
-
课程介绍
课程亮点:
朝九晚九全程跟班答疑、一对一督学、定期直播串讲、五分钟内有问必答、出勤率和进度监督、作业与测试
学习目标:
熟悉AI工具,包括TensorFlow、Keras、Caffe、PyTorch
熟悉深度学习应用
熟悉CNN、RNN、Faster RCNN等深度神经网络模型,并掌握其相关的优化算法
了解深度学习高级算法,包括卷积神经网络、循环神经网络等
掌握优化算法和高性能计算方法
掌握计算机视觉图像识别一线行业案例
课程内容:
01章预备知识:图像识别方法的演进基础
01-01开发环境配置:Anaconda环境和MXNet
01-02深度学习简介:起源、特点和发展
01-03计算机视觉概述
01-04数据操作
01-05自动求梯度
01-06图像识别的演进
01-07线性回归与线性回归的实现
01-08线性模型:对数线性二分类、多分类
01-09独热和稠密度向量表示
01-10softmax回归与实现
01-10基于深度学习的图像识别技术发展
02章深度学习基础知识
01-01线性模型的局限性:异或问题
01-02非线性输入转换、核方法、可训练的映射函数
01-03感知机和多层感知机的实现
01-04模型选择、欠拟合过拟合问题
01-05权重衰减和丢弃法
01-06实战案例:房价预测模型
01-07神经网络基础
01-08前馈神经网络、BP神经网络
01-09神经网络的训练
01-10深度学习计算
03章卷积神经网络与深度学习
01-01二维卷积层相关运算
01-02填充和步幅
01-03多输入通道和多输出通道
01-04二维大池化层和平均池化层
01-05卷积神经网络LeNet模型
01-06深度卷积神经网络AlexNet
01-07使用重复数据的网络
01-08网络中的网络:NIN块和NIN模型
01-09合并行连接的网络
01-10批量归一化
01-11残差网络ResNet模型
01-12稠密度连接网络DeseNet模型
04章循环神经网络与深度学习
01-01语言模型计算
01-02循环神经网络
01-03模型语言数据集
01-04循环神经网络从零开始实现
01-05循环神经网络的简介实现
01-06通过时间反向传播
01-07门控循环单元
01-08长短期记忆
01-09深度循环神经网络
01-10双向循环神经网络
05章优化算法与深度学习
01-01优化与深度学习的关系
01-02梯度下降和随机梯度下降
01-03小批量随机梯度下降
01-04动量法与实现
01-05AdaGrad算法特点与实现
01-06RMSProp算法
01-07AdaDelta算法
01-08Adma算法
06章计算机技术与高性能计算
01-01衡量性能的方法
01-02提高性能性能的各种编程方法
01-03命令式和混合编程
01-04异步计算
01-05自动并行运算
01-06多GPU运算
07章AI应用方向之计算机视觉
01-01使用图像增广训练模型
01-02微调:热狗识别
01-03目标检测和边界框
01-04计算机视觉:锚框生成
01-05多尺度目标检测
01-06目标检测数据集:皮卡丘
01-07单发多框检测:SSD
01-08卷积神经网络系列:R-CNN
01-09语意分割和数据集
01-10全卷积网络
01-11样式迁移
08章计算机视觉案例:Kaggle图像识别
01-01案例1:图像分类
01-02案例2:狗的品种
01-03step1:获取和整理数据集
01-04step2:图像增广
01-05step3:读取数据集
01-06step4:定义模型
01-07step5:定义训练函数
01-08step6:训练模型
01-01词嵌入和连续词袋模型
01-02近似训练:负采样、层序softmax
01-03word2vec的实现
01-04子词潜入:fastText
01-05全局向量的词潜入:GloVe
01-06求近义词和类比词
01-07文本情感分类:使用循环神经网络
01-08文本情感分类:使用卷积神经网络(textCNN)
01-09编码器、解码器
01-10贪婪搜索、全局搜索、束搜索
01-11注意力机制
01-01案例1:机器人翻译
01-02step1:读取和与处理数据集
01-03step2:含注意力机制的编码器-解码器
01-04step3:训练模型
01-05step4:预测不定长的序列
01-06step5:评价翻译结果
01-07唐诗生成器
01-08step1:定义输入数据
01-09step2:定义多层LESTM模型
01-10step3:定义损失函数
01-11step4:训练模型生成文字
01-12step5:更多参数说明
01-13step6:运行自己的数据